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Pooled cross section: overview I

• Data obtained by pooling cross sections (PCS) are very useful for
establishing trends and conducting policy analysis.

• A pooled cross section is available whenever a survey is repeated over
time with new random samples obtained in each time period.

• Examples include the Current Population Survey (CPS) in USA and
Household Labor Survey (Hanehalkı İşgücü Anketi) in Turkey.

• With a PCS, often a goal is to see how the mean value of a variable
(fertility) has changed over time in ways that cannot be explained by
observable variables (education).

• Ex.: Has the fertility rate changed in ways that cannot be explained by
education?
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Pooled cross section: overview II

• From a policy perspective, PCSs are at the foundation of
difference-in-differences estimation.

• The typical DD setup is that data can be collected both before and after
an intervention (or ”treatment”), and there is (at least) one ”control
group” and (at least) one ”treatment” group.

• Often the intervention is of a yes/no form. But other nonbinary
treatments (such as class size) can be handled, too.
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Application I

• IS the Change in women’s fertility in the USA (1972-1984) can be explained
by rise in education levels of women?

• How much of the fall in average fertility cannot be explained by changes
in observed factors, including education? Here we require a PCS and look
at coefficients on year dummies.

• How much of the overall fall in average fertility be explained by increases
in average education?

• Before a full regression model let us go step by step and try to
understand the underlying patterns. What is the trend for average
number of kids over years?
f_url = "https://github.com/obakis/econ_data/raw/master/fertil1.rds"
download.file(url = f_url, destfile = "fertil1.rds", mode="wb")
dat = readRDS("fertil1.rds")
library(lmtest) # for pretty print of reg results
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Application II

#with(dat, tapply(kids, year, FUN=summary))
aggregate(kids ~ year, FUN=mean, data=dat)
## year kids
## 1 72 3.03
## 2 74 3.21
## 3 76 2.80
## 4 78 2.80
## 5 80 2.82
## 6 82 2.40
## 7 84 2.24

• The average fertility rate fell by about 0.79, −0.79 = 2.24 − 3.03.

• The same could be done through a regression as well.
reg1 = lm(kids ~year, data=dat) # this is probably not what we want
coeftest(reg1) # or maybe it is???
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Application III

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.4256 0.9267 9.09 < 2e-16 ***
## year -0.0727 0.0118 -6.14 1.1e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
dat$year_f = factor(dat$year)
reg2 = lm(kids ~ year_f, data=dat) # this is probably a better way
coeftest(reg2) # You see a trend over time?
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.026 0.130 23.24 < 2e-16 ***
## year_f74 0.182 0.180 1.02 0.30976
## year_f76 -0.223 0.185 -1.20 0.22912
## year_f78 -0.221 0.188 -1.18 0.23975
## year_f80 -0.209 0.189 -1.11 0.26865
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Application IV

## year_f82 -0.622 0.177 -3.53 0.00044 ***
## year_f84 -0.788 0.179 -4.41 1.1e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Again we can say that the average fertility rate fell by about 0.79. But
more importantly we have an idea about its significance. This is the
benefit of regression compared to simple comparison of means!

• Education is an important determinant of fertility. Let us see how it
changes over years
aggregate(educ ~ year, FUN=mean, data=dat)
## year educ
## 1 72 12.2
## 2 74 12.3
## 3 76 12.2
## 4 78 12.6
## 5 80 12.9
## 6 82 13.2
## 7 84 13.3
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Application V

reg3 = lm(educ ~ year_f, data=dat) # this is probably OK
coef(summary(reg3)) # You see a trend over time?
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.1538 0.209 58.164 0.000000
## year_f74 0.1467 0.288 0.509 0.610709
## year_f76 0.0764 0.297 0.257 0.797296
## year_f78 0.4895 0.302 1.620 0.105495
## year_f80 0.7264 0.303 2.400 0.016566
## year_f82 1.0720 0.283 3.783 0.000163
## year_f84 1.1117 0.287 3.879 0.000111

• Overall the increase in mean eduaction is 1.11 years. To see the effect of
this increase on fertility we need to know the partial effect of education
on fertility. For this we run the following regression
dat$year_f = factor(dat$year)
reg4 <- lm(kids~educ+age+agesq+black+east+northcen+west+year_f, data=dat)
coef(summary(reg4))
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Application VI

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.95228 3.05004 -2.607 9.25e-03
## educ -0.12269 0.01803 -6.806 1.64e-11
## age 0.53904 0.13837 3.896 1.04e-04
## agesq -0.00588 0.00156 -3.762 1.78e-04
## black 1.09095 0.17311 6.302 4.22e-10
## east 0.25290 0.12685 1.994 4.64e-02
## northcen 0.38523 0.11853 3.250 1.19e-03
## west 0.23257 0.16532 1.407 1.60e-01
## year_f74 0.25608 0.17265 1.483 1.38e-01
## year_f76 -0.10630 0.17857 -0.595 5.52e-01
## year_f78 -0.07050 0.18136 -0.389 6.98e-01
## year_f80 -0.07855 0.18261 -0.430 6.67e-01
## year_f82 -0.53255 0.17230 -3.091 2.05e-03
## year_f84 -0.54226 0.17436 -3.110 1.92e-03

• Each additional year of education is estimated to reduce the number of
children by about 0.123, on average.
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Application VII

• Compared to 1972, fertility fell by about 0.55 children in 1984. This is the
drop that cannot be explained by the explanatory variables.

• Of the overall drop of about 0.79 children, the increase in education (1.11
years on average) accounts for about 0.14 ≈ 1.11 × 0.123 of that, or about
18%.

• In the previous estimation with the fertility data, we assumed the effect
of education (and all other variables) was the same over time.

• We can easily allow the slopes to change over time by forming
interactions and adding them to the model.
reg5 = lm(kids~educ+age+agesq+black+east+northcen+west+

year_f+year_f:educ, data=dat)
coef(summary(reg5))
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Application VIII

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.61295 3.12654 -2.755 5.97e-03
## educ -0.02456 0.05357 -0.458 6.47e-01
## age 0.51493 0.13894 3.706 2.21e-04
## agesq -0.00561 0.00157 -3.573 3.67e-04
## black 1.09031 0.17333 6.290 4.55e-10
## east 0.24805 0.12711 1.952 5.12e-02
## northcen 0.37446 0.11869 3.155 1.65e-03
## west 0.21657 0.16582 1.306 1.92e-01
## year_f74 0.82860 0.90059 0.920 3.58e-01
## year_f76 0.89183 0.87799 1.016 3.10e-01
## year_f78 1.71434 0.94992 1.805 7.14e-02
## year_f80 0.97952 0.89447 1.095 2.74e-01
## year_f82 1.06195 0.87204 1.218 2.24e-01
## year_f84 1.54243 0.89484 1.724 8.50e-02
## educ:year_f74 -0.04779 0.07230 -0.661 5.09e-01
## educ:year_f76 -0.08241 0.07058 -1.168 2.43e-01
## educ:year_f78 -0.14509 0.07515 -1.931 5.38e-02
## educ:year_f80 -0.08768 0.07024 -1.248 2.12e-01
## educ:year_f82 -0.12869 0.06807 -1.891 5.89e-02
## educ:year_f84 -0.16553 0.06961 -2.378 1.76e-02
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Application IX

Let us test year and education interaction terms:
library(car)
linearHypothesis(reg5, matchCoefs(reg5, "educ:year"), vcov=hccm(reg5))
## Linear hypothesis test
##
## Hypothesis:
## educ:year_f74 = 0
## educ:year_f76 = 0
## educ:year_f78 = 0
## educ:year_f80 = 0
## educ:year_f82 = 0
## educ:year_f84 = 0
##
## Model 1: restricted model
## Model 2: kids ~ educ + age + agesq + black + east + northcen + west +
## year_f + year_f:educ
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
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Application X

## 1 1115
## 2 1109 6 1.02 0.41

Jointly insignificant, even though educ:year_f84 and educ:year_f82 are
individually significant.

• Coefficient on, say, year_f84 is the difference in fertility between 1984
and 1972 at educ = 0; not interesting.

• Effect of schooling in base year very close to zero.

• The joint test for all interactions with educ gives p-value = 0.41, so we
cannot reject the null that the effect of education has been constant. But
it seems fertility has become more sensitive to education in the last
couple of years of the data (1982, 1984).
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DD with 2 groups and 2 time periods I

• Useful to study the data coming from a natural experiment (or a
quasi-experiement). This is called natural experiment because
⇒ an exogenous event (usually a change in government policy) changes
the conditions under which individuals / firms etc. operate.
⇒ There are at least one control group (not affected by policy change)
and one treatment group (affected by policy change).

• DD methodology is used widely to evaluate the consequences of natural
experiments (or quasi-experiments). There are two key elements in
natural experiments:

• Outcomes are observed for two groups over two time periods. One of the
groups is exposed to a ”treatment” (or intervention) in the second period
but not in the first period. The second group is not exposed to the
treatment during either period.

14 / 34



DD with 2 groups and 2 time periods II

• In the textbook version where we have 2 groups and 2 time periods. As a
result, treating one of groups and time periods as reference, we need at
least two dummy variables: 1 for the other group and 1 for the other time
period.

• Ex.: Remember the famous minimum wage example: Card and Krueger
(1994) studied the increase in the minimum wage in New Jersey from 4.25
USD to 5.05 USD. This change took effect on April 1, 1992. The minimum
wage in Pennsylvania remained at 4.25 USD throughout this period.

• Card and Krueger collected data on employment at fast food restaurants
in New Jersey and Pennsylvania (the neighboring state) in February
(before) and in November (after).

• Here New Jersey is the ”treatment state” and Pennsylvania is the ”control
state”. Without data from Pensylvania, we cannot control for aggregate
changes over time that affect employment in both states.

15 / 34



DD with 2 groups and 2 time periods III

• Let A be the control group and B the treatment group. Let dT = 1 for a
unit in B, and dT = 0 for a unit in A in both periods. Similarly, let d2 = 1
for a unit in the second time period and d2 = 0 for a unit in the first
period for both states. A typical model would be:

y = β0 + β1dT + δ0d2 + δ1d2 ⋅ dT + u (1)
where y is the outcome of interest. What was missing in previous
regression is the specifity of the second period for treatment group !

Before (1) After (2) After − Before
Control (A) β0 β0 + δ0 δ0
Treatment (B) β0 + β1 β0 + δ0 + β1 + δ1 δ0 + δ1
Treatment − Control β1 β1 + δ1 δ1

• While powerful, the basic DD approach can suffer from several problems.
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DD with 2 groups and 2 time periods IV

• First, there may be compositional effects. For example, when studying the
effects of the intervention to reduce class size, it may be the case that the
students in the two years are not comparable. Perhaps the smaller class
sizes attracts new students to that district. This is the problem of
compositional changes.
⇒ One can control for changes in composition to some extent by including
observed covariates as controls.

y = β0 + β1dT + δ0d2 + δ1d2 ⋅ dT + xγ + u

• Second, a potential problem with using only two periods is that the control
and treatment groups may be trending at different rates having nothing to
do with the intervention. There is a large literature on dealing with violation
of parallel trends assumption.
⇒ Only way to solve this problem is get another control group or more years
of data.
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Application I

Effect of Direct Sale Points (”tanzim satış”) on inflation rate in Turkey

• On 11 February 2019, the government introduced Direct Sale Points (DSP).
DSPs are municipality-led vegetable stalls which sell products at
discounted prices (called “tanzim satış” in Turkish).

• Only 9 products have been sold at these DSP (tomatoes, potatoes,
onions, green peppers and other vegetables). The data contains monthly
inflation rate in February for these 9 products in all regions of Turkey in
2018 (before DSP) and in 2019 (after DSP).

• In February 2019 DSP were operated only in Istanbul and Ankara (called
“tanzim regions”), later they were operated in other cities as well. Since
there were only 65 DSP in Tanzim regions (50 in Istanbul and 15 in Ankara)
but a large population (15 million in Istanbul and almost 6 million in
Ankara) it is not obvious that there is an effect on inflation rates.
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Application II

furl = "https://github.com/obakis/econ_data/raw/master/tanzim_pooled.rds"
download.file(furl, destfile = "tanzim_pooled.rds", mode="wb")
tanzim = readRDS("tanzim_pooled.rds")

• A naive analyst would use data on tanzim regions and estimate a simple
model where the year dummy on 2019 (y19) capture the effect of DSPs on
inflation rate:

inf = α0 + α1y19 + u

reg1 = lm(inf ~ y19, data=subset(tanzim, tanzim_reg==1))
coef(summary(reg1))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.67 2.93 1.94 0.06114
## y19 -12.11 4.14 -2.92 0.00614
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Application III

• Since this is a simple regression on a single dummy variable, the
intercept is the average inflation rate in 2018 and the coefficient on y19r
is the difference in the inflation rate from 2018 to 2019 iin tanzim regions.
Since one thing that changes is the introduction of DSPs, a naive
approach would be to conclude that the effect of DSPs on inflation rate is
−12.1 persentage points.

• Unfortunately, α̂1 will have a causal interpretation only when
Gauss-Markov assumptions are verified. Among them the most important
one is zero-conditional mean: Cov(y19, u) = 0. For this to be true, we
need that nothing in the error term changes from 2018 to 2019 except.

• It is highly possible that some other things are changing over time along
with the introduction of DSPs. Macro shocks are such an example.
Indeed, if we run the same regression for other regions, we obtain
reg2 = lm(inf ~ y19, data=subset(tanzim, tanzim_reg==0))
coef(summary(reg2))
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Application IV

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.59 0.81 8.14 4.33e-15
## y19 -5.65 1.15 -4.93 1.17e-06

• Therefore, even in other regions without DSPs the inflation rate was lower
in 2019 which supports the claim about macro shocks specific to 2019.

• If the estimate we get from the second regression using data from other
regions can be thought as a proxy for macro shocks (or all other effects
other than DSPs), then what would be the ”true” effect of DSPS? Probably,
−12.1 − (−5.65) = −6.45. This is the answer to the question: how 2019 is
different in tanzim regions compared to other regions?
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Application V

• Another naive analyst could use data from 2019 and estimate a simple
model where the coefficient on dummy variable tanzim_reg capture the
effect of DSPs on inflation rate:

inf = γ0 + γ1tanzim_reg + u

reg1 = lm(inf ~ tanzim_reg, data=subset(tanzim, year==2019))
coef(summary(reg1))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.943 0.67 1.41 0.16076
## tanzim_reg -7.376 2.42 -3.05 0.00254

• The intercept is the average inflation rate in other regions and the
coefficient on tanzim_reg is the difference in the inflation rate between
tanzim regions and the rest of Turkey.
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Application VI

• Unfortunately, γ̂1 will have a causal interpretation only when
Cov(tanzim_reg, u) = 0. For this to be true, we need that nothing in the
error term changes between tanzim and other regions.

• But in reality there may be region-specific unobserved factors in the
error term. changes from 2018 to 2019 except. Indeed, if we run the same
regression using data from 2018, we obtain
reg2 = lm(inf ~ tanzim_reg, data=subset(tanzim, year==2018))
coef(summary(reg2))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.591 0.933 7.064 1.87e-11
## tanzim_reg -0.919 3.365 -0.273 7.85e-01

• Therefore, even before the introduction of DSPs the inflation rate was
lower in tanzim regions.
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Application VII

• If the estimate for region-specific unobserved factors is given by the
second regression, then what would be the ”true” effect of DSPS?
Probably, −7.38 − (−0.92) = −6.46. This is the answer to the question:
how tanzim regions are different from other regions in 2019 compared to
2018 ?

• Both of above the reasonings come to see how the difference between
tanzim regions and other regions change from 2018 to 2019. This is known
as the difference-in-differences (DD) estimator because it can be
expressed as

̂δ1 = ( ̄inf19,t − ̄inf18,t) − ( ̄inf19,o − ̄inf18,o)
or

̂δ1 = ( ̄inf19,t − ̄inf19,o) − ( ̄inf18,t − ̄inf18,o)
where o means ”other regions” and t means ”tanzim regions”. To
calculate the effect of DSP using DD estimator
aggregate(inf ~ year + tanzim_reg, data=tanzim, FUN=mean)
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Application VIII

## year tanzim_reg inf
## 1 2018 0 6.591
## 2 2019 0 0.943
## 3 2018 1 5.672
## 4 2019 1 -6.433
dT = -6.43-5.67
dT
## [1] -12.1
dC = 0.94 - 6.59
dC
## [1] -5.65
dT - dC
## [1] -6.45

• An important question is whether ̂δ1 is different from zero? For this, we
need std. error of it. How can we compute a std. error for ̂δ1?
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Application IX

• Actually this can be obtained through the following model
inf = β0 + δ0 y19 + β1 tanzim_reg + δ1 tanzim_reg ⋅ y19 + u

The following table summarizes the meaning of various coefficients:
ȳ is equal to Before After After − Before
Control (other) β0 β0 + δ0 δ0
Treatment (tanzim) β0 + β1 β0 + δ0 + β1 + δ1 δ0 + δ1
Treatment − Control δ1

• β0: average inflation in control group (other regions) in the first period.

• β1: difference between treatment (tanzim) and control (other) groups in the
first period.

• δ0: change in inflation rate across the two periods for the control group.

• β1 + δ1: difference between treatment and control groups after the
intervention (DSPs).
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Application X

• δ0 + δ1: change in outcome across the two periods for the treatment group.

• δ1 is the DD estimate.

• In R:
reg = lm(inf ~ y19*tanzim_reg, data=tanzim)
summary(reg)
##
## Call:
## lm(formula = inf ~ y19 * tanzim_reg, data = tanzim)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.58 -9.63 -1.90 8.25 40.02
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.591 0.813 8.11 4.5e-15 ***
## y19 -5.648 1.149 -4.92 1.2e-06 ***
## tanzim_reg -0.919 2.930 -0.31 0.75
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Application XI

## y19:tanzim_reg -6.457 4.143 -1.56 0.12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.9 on 464 degrees of freedom
## Multiple R-squared: 0.0746,Adjusted R-squared: 0.0686
## F-statistic: 12.5 on 3 and 464 DF, p-value: 7.4e-08
### A better model would allow for clustered std errors
library("fixest")
reg2 = feols(inf ~ y19*tanzim_reg, data=tanzim, cluster="nuts2")
summary(reg2)
## OLS estimation, Dep. Var.: inf
## Observations: 468
## Standard-errors: Clustered (nuts2)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.591 0.539 12.23 4.7672e-12 ***
## y19 -5.648 0.943 -5.99 2.9829e-06 ***
## tanzim_reg -0.919 0.861 -1.07 2.9581e-01
## y19:tanzim_reg -6.457 1.383 -4.67 8.8010e-05 ***
## ---
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Application XII

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 11.9 Adj. R2: 0.068642

### Alternatively, we can avoid nuts2 and year fixed effects being printed.
#reg2 = feols(inf ~ tanzim_reg:y19 | nuts2+year,
# data=tanzim, cluster="nuts2")
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When treament is continuous I

Effect of a Garbage Incinerator’s Location on Housing Prices

• Above, we mentioned problem of compositional changes. This example
will allow us to see how to control for compositional changes in the DD
approach.

• We study the effect that a new garbage incinerator had on housing values
in Massachusetts. The rumor that a new incinerator would be built began
after 1978, and construction began in 1981.

• The incinerator was expected to be in operation soon after the start of
construction. We will use data on prices of houses that sold in 1978 and
another sample on those that sold in 1981.

• Year dummy is y81 it takes the value of 1 for year 1981 and 0 for ear 1978.
We also define nearinc = 1 if a house is near the incinerator, more
concertely if it is within three miles.
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When treament is continuous II

f_url = "https://github.com/obakis/econ_data/raw/master/kielmc.rds"
download.file(url = f_url, destfile = "kielmc.rds", mode="wb")
dat = readRDS("kielmc.rds")

• DD estimator using sample averages
aggregate(rprice~year, FUN=mean, data=dat)
## year rprice
## 1 1978 76628
## 2 1981 92663

• DD estimator using regression
rprice = β0 + δ0 y81 + β1 nearinc + δ1 nearinc ⋅ y81 + u

• The parameter of interest is, δ1, which measures the decline in housing
values due to the new incinerator, provided we assume that houses both
near and far from the site did not appreciate at different rates for other
reasons.
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When treament is continuous III

#did <- lm(rprice ~ y81 + nearinc + nearinc:y81, data=kielmc)
did <- lm(rprice ~ nearinc*y81, data=dat)
coef(summary(did))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 82517 2727 30.26 1.71e-95
## nearinc -18824 4875 -3.86 1.37e-04
## y81 18790 4050 4.64 5.12e-06
## nearinc:y81 -11864 7457 -1.59 1.13e-01

• To control for compositional changes we will add other control variables
that control for the change in average house attributes (quality, space
etc.) over time which may depend on the location of houses.

• Even if the composition of houses does not change that much, including
house characteristics will reduce the error variance, which shrinks the
standard error of the OLS estimates.
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When treament is continuous IV

#intst: dist. to interstate, ft
#bath: number of bathrooms
#rooms: number of rooms
did_ctr <- lm(log(rprice) ~ nearinc*y81 + age + log(intst)

+ rooms + baths, data=dat)
coef(summary(did_ctr))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.57744 0.284799 33.629 6.20e-106
## nearinc 0.01687 0.052886 0.319 7.50e-01
## y81 0.17751 0.031309 5.670 3.25e-08
## age -0.00188 0.000466 -4.030 7.01e-05
## log(intst) 0.05043 0.027763 1.816 7.03e-02
## rooms 0.08714 0.018847 4.623 5.53e-06
## baths 0.25285 0.023491 10.763 3.40e-23
## nearinc:y81 -0.07528 0.057386 -1.312 1.91e-01

Comparing both:
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When treament is continuous V

Dependent variable:
rprice log(rprice)
(1) (2)

nearinc −18,824.000∗∗∗ (4,875.000) 0.017 (0.053)
y81 18,790.000∗∗∗ (4,050.000) 0.178∗∗∗ (0.031)
age −0.002∗∗∗ (0.0005)
log(intst) 0.050∗ (0.028)
rooms 0.087∗∗∗ (0.019)
baths 0.253∗∗∗ (0.023)
nearinc:y81 −11,864.000 (7,457.000) −0.075 (0.057)
Constant 82,517.000∗∗∗ (2,727.000) 9.580∗∗∗ (0.285)
Observations 321 321
Adjusted R2 0.166 0.650

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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