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Regression as comparison-of-means I

• Say we want to knowwhether women earn less compared to men in USA.
One easy way is to compare mean hourly wages using wage1 data, (a
sample of 1976 Current Population Survey).
url = "https://github.com/obakis/econ_data/raw/master/wage1.rds"
download.file(url, "wage1.rds", mode ="wb")
wage1 = readRDS("wage1.rds")
View(wage1)

# average wage for men and women.
aggregate(wage ~ female, data = wage1, FUN = mean )
## female wage
## 1 0 7.10
## 2 1 4.59
7.10-4.59
## [1] 2.51

• Even if there is a difference of 2.51 dollars between average hourly wage
of women and men, we do not know whether this difference is
statistically significant. Is the difference statistically significant?
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Regression as comparison-of-means II

• This is why it is better to use a simple regression of the following form
wage = β0 + δ0female + u

where female = 0 for male workers and female = 1 for female workers.
δ0 is is the difference in average hourly wage between females and
males.
reg = lm(wage ~ female, data=wage1)
### look at the summary to determine whether the diff. is significant
summary(reg)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.10 0.210 33.81 8.97e-134
## female -2.51 0.303 -8.28 1.04e-15
### To get back "wage level" for women
b=coef(reg)
b
## (Intercept) female
## 7.10 -2.51
## male wage = beta_0
b[1]
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Regression as comparison-of-means III

## (Intercept)
## 7.1

## female effect = beta_0 + delta_0
b[1]+b[2]

## (Intercept)
## 4.59

A simple regression model as above can be used for
”comparison-of-means” test as above.

• While aggregate (tables of mean wages) focus on wage levels, lm
(regression) focus on wage differences.
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Regression as a tool for ”controlling for” I

• When we estimate the following model
wage = β0 + δ0female + u

What does a significant δ0 signify? It represents (total) gender wage gap,
for whatever reason (including education).

• Can we say that being female causes lower wages?Or does the above
mean that there is a discrimination against women?

• For this to be causal we would need the zero conditional mean
assumption: E(u|female) = 0 [or equivalently Cov(female, u) = 0]. Once
we assume this, we can write

δ0 = E(wage|female = 1) − E(wage|female = 0)
so that the difference in hourly wages (δ0) is only due to gender itself. All
other characteristics are assumed to be the same for both genders.
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Regression as a tool for ”controlling for” II

• In reality, we doubt that the zero conditional mean assumption holds.
There are various factors that differ between women and men. Think
about average education, experience, job quality etc. All these factors
are likely to affect wages.

• If these factors differ between men and women, then our estimate for δ0
will be biased. In other words δ0 will represent both pure gender gap and
other effects.

• To decide whether there is discrimination we need to compare men and
women with the same observable characteristics. Two problems. First,
usually we do not control data collection process and second in real data
there are differences especially regarding work experience and education
(for older generations).

• So, what to do? Can we change the data?
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Regression as a tool for ”controlling for” III

• This is where multiple regression ”controls for” (holds fixed) observable
characteristics as if we compare men and women with the same
characteristics. A first factor to consider is education.

wage = β0 + δ0female + β1educ + u

• Now, education is in the model. And the zero conditional mean
assumption: E(u|female, educ) = 0. Assuming it holds,we can write

δ0 = E(wage|female = 1, educ) − E(wage|female = 0, educ)
δ0 now represents gender gap in wage for individuals with the same
education level. Alternatively, we can sayδ0 now represents gender gap
in wage after correction for differences in education.
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Regression as a tool for ”controlling for” IV

• Even if in real life average education levels are not the same the above
regression allows us to compute the difference in hourly wages that
would occur if men and women had the same level of education on
average. This is what controlling for means.
reg = lm(wage ~ female+educ, data=wage1)
summary(reg)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.623 0.6725 0.926 3.55e-01
## female -2.273 0.2790 -8.147 2.76e-15
## educ 0.506 0.0504 10.051 7.56e-22

As we saw above, once we control for education the difference in hourly
wage between females and males is relatively lower. How do you
interpret this?Another factor is experience

wage = β0 + δ0female + β1educ + β2exper + u

reg = lm(wage ~ female+educ+exper, data=wage1)
summary(reg)$coef
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Regression as a tool for ”controlling for” V

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.7345 0.7536 -2.30 2.18e-02
## female -2.1555 0.2703 -7.97 9.74e-15
## educ 0.6026 0.0511 11.79 1.33e-28
## exper 0.0642 0.0104 6.18 1.32e-09

δ0 is the difference in hourly wage between females and males who have
the same amount of education and experience. This is getting lower. How
do you interpret this?
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Multiple regression in R I

• linear regression model:
yi = β0 + β1xi1 +…+ βkxik + ui, i = 1,… , n.

Application: estimation of wage equation using hls2011, a random
sample of 762 observations from Turkish Household Labor Force Survey,
2011.

• Get the data:
f_url = "https://github.com/obakis/econ_data/raw/master/hls2011.rds"
download.file(url = f_url, destfile = "hls2011.rds", mode="wb")
hls = readRDS("hls2011.rds")
head(hls,3)

• A regression example in R:
reg = lm(log(hwage) ~ educ + female + emp_sect, data=hls)
summary(reg)
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Multiple regression in R II

##
## Call:
## lm(formula = log(hwage) ~ educ + female + emp_sect, data = hls)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0281 -0.2906 -0.0164 0.2619 2.3438
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.76210 0.15824 4.82 1.8e-06 ***
## educ 0.05854 0.00434 13.48 < 2e-16 ***
## female -0.09318 0.04175 -2.23 0.026 *
## emp_sectpriv 0.08211 0.15739 0.52 0.602
## emp_sectpub 0.82967 0.16168 5.13 3.7e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.463 on 757 degrees of freedom
## Multiple R-squared: 0.536,Adjusted R-squared: 0.534
## F-statistic: 219 on 4 and 757 DF, p-value: <2e-16
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Multiple regression in R III

• ”ceteris paribus” interpretation...

• Note that emp_sect is a factor variable with 3 levels. In R, categorical
and ordered categorical (ordinal) variables are called factors. Each
possible value of a categorical variable is called a level. In a regression a
set of dummy variables will be automatically created by R. More
precisely, if we have n groups/levels, n − 1 dummy variables will be
created.

• Operators +, -, :, *, /, ^ have special meanings in a formula object.
To ensure arithmetic meaning, we need either to protect by insulation in
a function, e.g.,log(x1 * x2) or to use I() function.

• Generic functions related to lm object (See help(lm) for details):
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Factor variables I

• The lm() command, relies on model.matrix() for the creation of dummy
variables.
dummy <- factor(LETTERS[1:4])
model.matrix( ~ dummy)
## (Intercept) dummyB dummyC dummyD
## 1 1 0 0 0
## 2 1 1 0 0
## 3 1 0 1 0
## 4 1 0 0 1
## attr(,"assign")
## [1] 0 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$dummy
## [1] "contr.treatment"

• To change the base level of a factor variable (ex. ”region” variable ) we
can use relevel function
table(hls$emp_sect)
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Factor variables II

##
## other priv pub
## 9 557 196
levels(hls$emp_sect)
## [1] "other" "priv" "pub"
contrasts(hls$emp_sect) #other is base level
## priv pub
## other 0 0
## priv 1 0
## pub 0 1
coef(summary(reg))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7621 0.15824 4.816 1.77e-06
## educ 0.0585 0.00434 13.484 2.71e-37
## female -0.0932 0.04175 -2.232 2.59e-02
## emp_sectpriv 0.0821 0.15739 0.522 6.02e-01
## emp_sectpub 0.8297 0.16168 5.131 3.66e-07
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Factor variables III

hls$emp_sect <- relevel(hls$emp_sect, ref = "pub")
reg_upd <- update(reg, formula = . ~ .) ## we change nothing here!
coef(summary(reg_upd))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5918 0.06375 24.97 7.62e-101
## educ 0.0585 0.00434 13.48 2.71e-37
## female -0.0932 0.04175 -2.23 2.59e-02
## emp_sectother -0.8297 0.16168 -5.13 3.66e-07
## emp_sectpriv -0.7476 0.04327 -17.28 1.28e-56
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Interactions I

• We already saw that the model
wage = β0 + δ0female + β1educ + ⋯ + u

controls for education when analyzing gender wage gap.

• But this model assumes that returns to education are the same for men
and women. What if not? Assume that return to education is different

wage = β0 + δ0female + β1educ + δ1female × educ + ⋯ + u

• But now, what is the interpretation of δ0? It is the wage gap between men
and women who has no education educ = 0 because the partial effect of
female is given by:

Δwage
Δfemale =

̂δ0 + ̂δ1 educ
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Interactions II

• Usually this is not interesting because the average worker has more than
zero years of schooling. The general practice is to calculate the wage gap
for men and women who have mean education level.

• Even if in the data education levels are not the same this is interpreted
as the wage gap that would be observed if there was no difference in
terms of education between men and women. We can calculate

Δwage
Δfemale



educ=µeduc

= ̂δ0 + ̂δ1 μeduc

but we cannot know whether the above is significant or not easily,
because we lack a t statistic for this expression.

• A second way is to reparameterize the model so that the coefficients on
the original variables have an interesting meaning.
wage = α̂0 + α̂1 female + α̂2 educ + α̂3female × (educ − μeduc) + …

where μeduc is the average years of schooling in the sample.
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Interactions III

• The partial effect of female is given by
Δwage
Δfemale = α̂1 + α̂3 (educ − μeduc)

Evaluating this at the mean value of education (educ = μeduc) we get
Δwage
Δfemale



educ=µeduc

= α̂1 = ̂δ0 + ̂δ1μeduc

where the second equality is the partial effect of female at the mean
value of education from the regular model.

• Thus, the coefficient on female in the reparametrized model, α̂1, is the
wage gap at the mean value of education, educ = μeduc. We can use
associated t statistic to decide whether it is significant or not.

• In R:
reg = lm(log(hwage) ~ female*educ + emp_sect, data=hls)
round(coef(summary(reg)),3)
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Interactions IV

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.585 0.065 24.204 0.000
## female -0.052 0.103 -0.507 0.612
## educ 0.059 0.005 12.361 0.000
## emp_sectother -0.840 0.164 -5.137 0.000
## emp_sectpriv -0.749 0.043 -17.230 0.000
## female:educ -0.004 0.009 -0.436 0.663

• If we simply look at the coefficient on female, we may conclude wrongly
that it is not significant at the 5% level. But this coefficient supposedly
measures the effect when educ = 0, which is not interesting.

• To compute the partial effect of female on wage at the mean value of
educ, we can use directly the formula α̂1 = ̂δ0 + ̂δ1μeduc
mu_edu = mean(hls$educ)
mu_edu
## [1] 9.26
b <- coef(reg)
b
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Interactions V

## (Intercept) female educ emp_sectother emp_sectpriv
## 1.58529 -0.05216 0.05944 -0.84022 -0.74933
## female:educ
## -0.00393
b[["female"]] + mu_edu*b[["female:educ"]]
## [1] -0.0885

• But this does not give us the standard error of this new estimate. We
need to rerun the regression, where we replace the interaction term with
”demeaned” interaction term.
reg2 = lm(log(hwage) ~ female+educ + female:I(educ-mu_edu)

+ emp_sect, data=hls)
round(coef(summary(reg2)),3)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.585 0.065 24.204 0.000
## female -0.089 0.043 -2.053 0.040
## educ 0.059 0.005 12.361 0.000
## emp_sectother -0.840 0.164 -5.137 0.000
## emp_sectpriv -0.749 0.043 -17.230 0.000
## female:I(educ - mu_edu) -0.004 0.009 -0.436 0.663
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Interactions VI

• We see that the associated t statistic with α̂1 = −0.089 is −2.053 which
means that it is significant at th 5 % significance level.
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Migrant wage gap I

• Assume that we have the following data generating process on migrant
and native population

wagen = 300 + 10edu + 20age + u

wagem = 200 + 20edu + 15age + v
Of course age and education distribution may differ across migrants and
natives. More on that later.
url = "https://github.com/obakis/econ_data/raw/master/fake_mig_dat.rds"
download.file(url, "fake_mig_dat.rds", mode ="wb")
mdat = readRDS("fake_mig_dat.rds")
head(mdat)

• We want to know whether there exists a wage differential between
migrants and natives
mreg = lm(wage~migrant,data=mdat)
summary(mreg)$coef
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Migrant wage gap II

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1355 9.11 148.7 3.12e-117
## migrant -602 20.37 -29.6 1.25e-50

• The answer is Yes: native wages are higher by 602 on average, but age and
education distributions are not the same across natives and migrants ...
aggregate(cbind(educ,age) ~ migrant, FUN=mean, data=mdat)
## migrant educ age
## 1 0 15.05 45.2
## 2 1 5.25 29.9
summary(lm(age ~ migrant, data=mdat))$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 45.2 0.52 87.1 1.27e-94
## migrant -15.4 1.16 -13.2 1.47e-23
summary(lm(educ ~ migrant, data=mdat))$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.1 0.247 60.9 1.16e-79
## migrant -9.8 0.553 -17.7 2.52e-32
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Migrant wage gap III

• and they matter for wage:
reg0 = lm(wage ~ age+educ , data=mdat)
summary(reg0)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.7 22.213 0.573 5.68e-01
## age 21.5 0.687 31.219 2.13e-52
## educ 24.2 1.176 20.597 3.42e-37

• If we want to compute the wage differential between natives and
migrants we need to control for educ and age differences. Given our data
generating process that we used above, actually we can easily compute
the expected wage difference between a native and a migrant who have
the same (for instance average) age and education level.

• For two individuals with average education and age the true wage
difference should be 180 approximately.
ave_age = mean(mdat$age) ; ave_age
## [1] 42.2
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Migrant wage gap IV

ave_edu = mean(mdat$educ) ; ave_edu
## [1] 13.1
wn = 300 + 10*ave_edu + 20*ave_age # true wage for natives
wm = 200 + 20*ave_edu + 15*ave_age # true wage for migrant
wn - wm
## [1] 180

• However, for observed data we do not know the data generating process.
To control for age and education we assume a linear model. A basic one
is the following:
reg1 = lm(wage~age+educ+migrant,data=mdat)
summary(reg1)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 414.4 19.327 21.4 2.21e-38
## age 16.8 0.334 50.4 6.98e-71
## educ 11.9 0.701 17.0 1.27e-30
## migrant -226.8 9.754 -23.3 3.19e-41

where the wage difference is only 227.
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Migrant wage gap V

• This is far better than 602 (unconditional/unadjusted wage difference).
However, the above model assumes that age and education have the
same effect in native and migrant populations. This is not true.

• As a fits step let us assume that the return to education differ for
migrants and natives.
reg2 = lm(wage ~ age + educ*migrant, data=mdat)
summary(reg2)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 431.16 14.949 28.84 8.78e-49
## age 17.15 0.259 66.29 2.40e-81
## educ 9.81 0.594 16.53 1.08e-29
## migrant -302.53 11.816 -25.60 2.01e-44
## educ:migrant 11.48 1.387 8.27 7.93e-13
aw_m = predict(reg2, list(migrant=1, age=ave_age, educ=ave_edu))
aw_n = predict(reg2, list(migrant=0, age=ave_age, educ=ave_edu))
aw_n - aw_m
## 1
## 152
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Migrant wage gap VI

##### To test for significance when educ = ave_edu
reg3 = lm(wage ~ age + educ + migrant +

migrant:I(educ-ave_edu), data=mdat)
coef(summary(reg3))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 431.16 14.949 28.84 8.78e-49
## age 17.15 0.259 66.29 2.40e-81
## educ 9.81 0.594 16.53 1.08e-29
## migrant -152.25 11.707 -13.01 8.16e-23
## migrant:I(educ - ave_edu) 11.48 1.387 8.27 7.93e-13

• A more general and better option is to allow the return to education and
to age differ across migrants status. This is the same thing as running
separate regressions for natives and migrants (except common intercept).
Since the version with interaction terms can provide further information
regarding migration effect we prefer the version with interaction terms
reg4n = lm(wage ~ age + educ, data=subset(mdat, migrant==0))
coef(summary(reg4n))
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Migrant wage gap VII

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 308.56 8.457 36.5 2.37e-50
## age 19.82 0.165 120.4 1.99e-89
## educ 9.95 0.247 40.4 1.47e-53
reg4m = lm(wage ~ age + educ, data=subset(mdat, migrant==1))
coef(summary(reg4m))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 196.6 5.856 33.6 5.57e-17
## age 15.2 0.146 103.7 2.92e-25
## educ 19.6 0.545 36.0 1.75e-17
aw_n = predict(reg4n, list(age=ave_age, educ=ave_edu))
aw_m = predict(reg4m, list(age=ave_age, educ=ave_edu))
aw_n-aw_m # we can not know whether the diff is significant or not
## 1
## 181
reg5 = lm(wage ~ (age + educ)*migrant, data=mdat)
summary(reg5)$coef
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Migrant wage gap VIII

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 308.56 8.506 36.3 4.49e-57
## age 19.82 0.166 119.7 1.53e-104
## educ 9.95 0.248 40.1 6.05e-61
## migrant -111.98 10.244 -10.9 1.96e-18
## age:migrant -4.64 0.219 -21.2 1.25e-37
## educ:migrant 9.64 0.586 16.4 2.10e-29
aw_m = predict(reg5, list(migrant=1, age=ave_age, educ=ave_edu))
aw_n = predict(reg5, list(migrant=0, age=ave_age, educ=ave_edu))
aw_n - aw_m # we can not know whether the diff is significant or not
## 1
## 181
##### To test for significance
reg6 = lm(wage ~ age + educ + migrant +

migrant:I(age-ave_age) +
migrant:I(educ-ave_edu), data=mdat)

coef(summary(reg6))
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Migrant wage gap IX

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 308.56 8.506 36.3 4.49e-57
## age 19.82 0.166 119.7 1.53e-104
## educ 9.95 0.248 40.1 6.05e-61
## migrant -181.46 5.080 -35.7 1.74e-56
## migrant:I(age - ave_age) -4.64 0.219 -21.2 1.25e-37
## migrant:I(educ - ave_edu) 9.64 0.586 16.4 2.10e-29

The more flexible model gives a wage difference equal to 181.5 which is
really close to 180.
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Outline

1 Regression analysis: introduction

2 Regression analysis: further issues
Inference: theoretical background
Hypothesis testing about a single parameter
Testing multiple linear restrictions: the F test
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Normality assumption I

• Up to here, we showed that the OLS estimators are BLUE. This is useful in
describing the precision (mean and variance) of the OLS estimators but
not sufficient for statistical inference which requires the full sampling
distribution.

• Gauss-Markov assumptions do not imply a distribution for the OLS
estimators. The shape of the distribution of the OLS estimators, is
determined by the distribution of the error term, u.

• Assumption 6: We assume that the unobserved error is normally
distributed

• The error is independent of independent variables and is normally
distributed with zero mean and variance σ2: u ∼ Normal(0, σ2)
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Normality assumption II

• Assumption 6 (normality) is much stronger than our previous
assumptions. It implies also assumption 4 (zero conditional mean) and
assumption 5 (homoskedasticity).

• For cross-sectional data, Assumptions 1-6 are called the classical linear
model (CLM) assumptions.

• Gauss-Markov assumptions + normality = CLM

• How is it justifiable to assume normality for u?
• central limit theorem: the arithmetic mean of a sufficiently large number of
independent random variables, each with a well-defined (finite) expected
value and finite variance, will be approximately normally distributed,
regardless of the underlying distribution.

• Since u is the sum of many factors affecting y, one may conclude that u
should has an approximate normal distribution.
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Normality assumption III

• The central limit theorem suggests that each component of u affect y in an
additive fashion. This may not be true in practice.

• Normality of u is an empirical matter: using wage vs log(wage) and other
transformations where necessary.

• When we have large samples, nonnormality of the errors may not be a
serious problem (asymptotic normality !!!).

• Normality is about the distribution of u not y or x. In general neither y,
nor x would be normally distributed in practice. But it is OK to say that
conditional on x, y has a normal distribution.
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Normality assumption IV
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Normality assumption V

Theorem (Normal sampling distributons):

β̂j ∼ Normal[βj,Var(β̂j)] ⇒ β̂j − βj
sd(β̂j)

∼ Normal(0, 1)

• The standardized estimator makes use of sd which relies on the unknown
constant σ. When we use the estimate σ̂, we get the t distribution with
n − (k + 1) degrees of freedom (df) instead of standard normal
distribution (SND)

β̂j − βj
se(β̂j)

∼ tn−k−1

A t distribution is similar to a SND, it is heavier in the tails, flatter near
the center, and its exact dispersion is dictated by df. When number of
observation is large (n ≥ 40) the t distribution is well approximated by
the SND.
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Normality assumption VI

• What does it mean ”normally distributed” with a given mean and sd? Ex.
What is the probability that a number we draw from a random process
withmean = 70 and sd = 4 is between 62 and 78 ( within 2 standard
deviations of the mean) ?
set.seed(1279)
x=rnorm(n=10, mean=70,sd=4)
round(x,1)
## [1] 70.1 68.3 65.2 67.0 67.0 70.8 66.8 69.2 59.5 67.2
sum(x >= 62 & x <= 78)/10
## [1] 0.9
x2=rnorm(n=20, mean=70,sd=4)
#round(x2,1)
sum(x2 >= 62 & x2 <= 78)/20
## [1] 1
x3=rnorm(n=50, mean=70,sd=4)
sum(x3 >= 62 & x3 <= 78)/50
## [1] 0.94
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Normality assumption VII

x4=rnorm(n=1000, mean=70,sd=4)
sum(x4 >= 62 & x4 <= 78)/1000

## [1] 0.949

hist(x4,col="darkturquoise")
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Normality assumption VIII
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• Standardization is just a rescaling:
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Normality assumption IX

val = c(62,70,78) # mean=70,sd=4
vals = (val-70)/4 # mean=0,sd=1
vals # How many std deviation each number is far from the mean?
## [1] -2 0 2

• The probability that a number we draw a number from a normal
distribution so that this number is within 2 standard deviations of the
mean is approximately 95%. This is always true, whether the random
variable is standardized or not does not matter.

• For x these values aremean = 70 and sd = 4. So, the boundary values
are 62 = 70 − 2 × 4 and 78 = 70 + 2 × 4. For standardized x these values
aremean = 0 and sd = 1. And the boundary values are −2 = 0 − 2 × 1
and 2 = 0 + 2 × 1.

P(62 ≤ x ≤ 78) = P⒧−2 ≤ x − x̄
sd(x) ≤ 2⒭ ≈ 0.95

If we use a continuous density function we get the following:
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Normality assumption X
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t test I

• It is important to remember that we do not observe β, we compute β̂
under Gauss-Markov assumptions and we would like to infer the value of
β using our estimate β̂. Since knowing the exact value of β would be
difficult we try to assess, at least, the likelihood of particular values such
as H0 ∶ βj = a.

• Imagine for a moment we know βj (the unknown population parameter).
Even if we know βj it is rarely the case that we get exactly β̂j = βj
because of sampling distribution. We will have a distribution for β̂j:
β̂j ∼ Normal[βj,Var(β̂j)]
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t test II

• And usually, in practice, β̂j ≠ βj. But we know that approximately 95% of
the time β̂j will be between βj − 2 × se(β̂j) and βj + 2 × se(β̂j), or
equivalently, β̂j−βjsd(β̂j)

is between −2 and 2

P⒧−2 ≤ β̂j − βj
se(β̂j)

≤ 2⒭ ≈ 0.95

• The problem is that we do not know βj !!! One idea is to assume a given
value for it, H0 ∶ βj = a, and then decide whether the observed β̂j is
consistent with H0 ∶ βj = a or not. Thus, we are inferring the value of
unobserved parameter βj from the observed estimate β̂j.
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t test III

• This is where t statistic intevenes. It measures how many standard errors
β̂j is away from a, the ”hypothesized value” of the unknown parameter.

tβ̂j =
β̂j − a
se(β̂j)

• If H0 ∶ βj = a is true, then the expected value for the t statistic would be
zero and 95% of the time the t statistic will be between −2 and 2. This
means that we are confident in H0.

• If H0 is wrong (βj ≠ a) then t statistic will move away from zero. The
farther the t statistic is from the zero the less confident we are that H0 is
likely to be true. The question is how far?
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t test IV
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t test V

• We need such a rule: if observed t statistic is higher than c in absolute
value, |t| > c, we reject H0. In practice, one frequently used value for c is
2 which corresponds to a 5% significance level

• Actually by deciding on a critical value, we also decide on significance
level. Even if we reject H0 (because |t| > c), it is still possible that H0 is
true. This probability is equal to the significance level we use.

• Thus, the significance level is the probability of rejecting H0 ∶ βj = a
when it is in fact true. ⇒ The risk we are taking in rejecting H0 when it is
in fact true!

• Remark: By default, a = 0 and the reported t statistic is equal to β̂j
se(β̂j)

, in
all(?) modern econometrics software programs.
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t test VI

• Example: Assume that there is a normally distributed random series with
mean = 4 and sd = 1.5
set.seed(1270)
x=rnorm(n=1000, mean=4, sd=1.5)

• We assume that the true mean is unknown to us (econometrician). We
want to infer the true mean through the usual t statistic. We try two
different values for a: H0 ∶ mean = 3.5 and H0 ∶ mean = 0.
t1 = (x-3.5)/1.5
mean(t1) ## mean of t1, should be close to 0 if null is true
## [1] 0.398
sd(t1)
## [1] 0.974
t2 = (x-0)/1.5
mean(t2) ## mean of t2, should be close to 0 if null is true
## [1] 2.73
sd(t2)
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t test VII

## [1] 0.974

• Remark: In reality, we do not have as many t statistics as above. We have
only an estimate and a t statistic for it. We can think that we draw
randomly 1 t statistic from both t1 and t2, this would be our ”observed t
statistic”.

• When H0 ∶ mean = 3.5 (case of t1) most realizations of t statistics are
centered around zero, this is why we are likely to observe a t statistic
between −2 and 2 (95%). Thus, we are confident in H0 ∶ mean = 3.5.
sum(t1 >= -2.0 & t1 <= 2.0)/1000
## [1] 0.942

• But when H0 ∶ mean = 0 (case of t2) most realizations of t statistics are
centered around 3, which should not happen if H0 is true. So, we will
most likely reject H0 ∶ mean = 0 because only a small part of ”observed t
statistic” values between −2 and 2 (22%).
sum(t2 >= -2.0 & t2 <= 2.0)/1000
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t test VIII

## [1] 0.223

sum( t2 >= 2.0)/1000

## [1] 0.777

• As a result, we reject easily H0 ∶ mean = 0 while H0 ∶ mean = 3.5 can not
be rejected.

• Graphs for t1 and t2
hist(t2, col=rgb(1,1,0,0.5), xlim=c(-3,6), xlab="", main = "")
hist(t1, col=rgb(0,1,1,0.5), add=TRUE)
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t test IX
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t test X

• In practice, we use 10% or 5% or 1% as significance level (α). Most
studies prefer 5% is which means that choose to mistakenly reject H0
when it is true 5% of the time.

• 2 factors that will determine the precise rejection rule are the alternative
hypothesis and the chosen significance level of the test.

• The widely used alternative hypothesis is H1 ≠ 0 (2-sided alternative),
but H1 > 0 and H1 < 0 are used as well (1-sided alternative).

• Say, our alternative hypothesis is two-sided, H1 ≠ 0 and we choose 5 %
as significance level (α). This α and H1 imply a critical value c, given df.
Then we reject H0 only if |tβ̂j | > c.

• The values of c are traditionally published in statistical tables.
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t test XI

• In modern times, all we need is a call to qt() function in R.

• We want to know for which positive number c the area under the t
distribution between −c and c is 0.95, P(−c ≤ X ≤ c) = 0.95.
• If 95% of the area lies between −c and c, then 5% of the area must lie
outside of this range. Given that the t distribution is symmetric, half of this
amount, 2.5%, must lie before −c. Then the area under the curve before c
must be: 0.025 + 0.95 = 0.975, thus P(X ≤ c) = 0.975.

• The boundary value that gives an area of 97.5%, under the t distribution, is
1.98 (we assume df = 120)
#qt(0.975, df=120) #qnorm(0.975,mean=0,sd=1)
alfa = 5/100
qt(1- alfa/2, df=120) #qnorm(0.975,mean=0,sd=1)
## [1] 1.98
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Two-sided alternative: example I

Econometric model: log(wage) = β0 + β1educ + β2exper + β3tenure + u
url = "https://github.com/obakis/econ_data/raw/master/wage1.rds"
download.file(url, "wage1.rds", mode ="wb")
wage1 = readRDS("wage1.rds")
View(wage1)

reg1 = lm(lwage ~ educ + exper + tenure, data=wage1)
summary(reg1)

##
## Call:
## lm(formula = lwage ~ educ + exper + tenure, data = wage1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0580 -0.2965 -0.0326 0.2879 1.4281
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
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Two-sided alternative: example II

## (Intercept) 0.28436 0.10419 2.73 0.0066 **
## educ 0.09203 0.00733 12.56 < 2e-16 ***
## exper 0.00412 0.00172 2.39 0.0171 *
## tenure 0.02207 0.00309 7.13 3.3e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.441 on 522 degrees of freedom
## Multiple R-squared: 0.316,Adjusted R-squared: 0.312
## F-statistic: 80.4 on 3 and 522 DF, p-value: <2e-16

• n − (k + 1) = 526 − (3 + 1) = 522;
df_ex1 = df.residual(reg1)
df_ex1
## [1] 522

• 5% significance level: c = 1.96;
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Two-sided alternative: example III

alfa = 0.05
# alfa/ 2 for 2-sided, alfa for 1-sides
c_ex1=qt(1-alfa/2, df=df_ex1)
c_ex1
## [1] 1.96

• texper = 0.0041
0.0017 ≅ 2.4 > 1.96, etc.

t_ex1 = summary(reg1)$coef[,3]
t_ex1 > c_ex1
## (Intercept) educ exper tenure
## TRUE TRUE TRUE TRUE

• Thus, H0 ∶ βj = 0 is rejected at the 5% significance level for all covariates
and constant.

• Interpretation: exper (or β̂exper) is statistically significant at the the 5%
significance level
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Two-sided alternative: example IV

• Remark: n − (k + 1) ≥ 120, which implies that we can use Normal
distribution instead of t distribution.
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Some remarks on testing I

1 Either we reject H0 or fail to reject it. We never ”accept” H0. When we cannot
reject H0 ∶ β = 0, it is unlikely that we can reject H0 ∶ β = ε where ε is an arbitrary
small number. Since all of these non-rejected values of ε cannot be true at the
same time, we say ” we fail to reject H0” instead of ”we accept H0”.

2 Only UNDER H0, the t statistic has a t distribution with n − (k + 1) df. We never
know what the true distribution of β̂ under H1 !!!

3 When we have large number of observations (in practice this means ≥ 40) t
distribution converges to a std. normal distr. whose 97.5th percentile is very close
to 2 so that we use the following simple rule of thumb |tβ̂j | ≥ 2 for t tests.

4 H0 ∶ β̂j = 0 is not meaningful. Why?

5 If we cannot reject H0, we say: xj has no partial (ceteris paribus) effect on y.
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Confidance intervals I

• If we repeat the process and get a fairly large number of estimates for βj
we could construct a confidence interval (CI) for the unknown population
parameter βj directly. But we have only one sample !

• Once we compute σ̂ (an estimate for error variance), we know that
(β̂j − βj)/se(β̂j) has a t distribution with n − (k + 1) df. This means that
95% of the time (β̂j − βj)/se(β̂j) will be between −c and c (for large
samples c ≈ 2). Using this we get 95% CI for βj as:

0.95 = P⒧ − c ≤ β̂j − βj
se(β̂j)

≤ c⒭ = P⒧ − c × se(β̂j) ≤ β̂j − βj ≤ c × se(β̂j)⒭

= P⒧β̂j − c × se(β̂j) ≤ βj ≤ β̂j + c × se(β̂j)⒭
where c is determined by the specified significance level.

• If we want a CI of 95%, we need to find c that corresponds to the 97.5th
percentile in a t distribution with n − (k + 1) df.
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Confidance intervals II

• For the standard normal distribution the 97.5th percentile is 1.96 which is
very close to 2. For t distribution it depends on degrees of freedom,
df = n− k − 1, but when df ≥ 40 the t distribution is close to he standard
normal distribution so that for a CI of 95% we use the following simple
rule of thumb

βj ≡ β̂ − 2 × se(β̂)

βj ≡ β̂ + 2 × se(β̂)
to find the lower and upper bounds of the CI in practice.
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Confidance intervals III
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Confidance intervals IV

• How to interpret CI? Think as follows: we draw 100 random samples from
population and estimate β̂j 100 times. 95 times our estimate (β̂) for
unknown parameter (β) will reside in the (βj, βj) interval.

• Of course, the above is the interpretation. In reality we compute CI from
unique sample we have using our estimate and residuals. Can we be sure
that this unique sample is part of the above 95%? Unfortunately NO!

• Once we have our CI, we can test for H0 ∶ βj = a in favor of H1 ∶ βj ≠ a. If
a lies in the CI we fail to reject H0, but reject it whenever a is not in the CI.

• Consider the following model
logRD = β0 + β1 log(sales) + β2profmarg + u

where we are explaining R&D expenditures by sales and profit margin
(ratio of profits to sales)
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Confidance intervals V

• Can we reject H0 ∶ β0 = 0 or H0 ∶ β1 = 1 or H0 ∶ β2 = 0?
url = "https://github.com/obakis/econ_data/raw/master/rdchem.rds"
download.file(url, "rdchem.rds", mode ="wb")
rdchem = readRDS("rdchem.rds")
View(rdchem)

reg <- lm(log(rd) ~ log(sales)+profmarg, data=rdchem)
summary(reg)

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.3783 0.4680 -9.35 2.9e-10 ***
## log(sales) 1.0842 0.0602 18.01 < 2e-16 ***
## profmarg 0.0217 0.0128 1.69 0.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.514 on 29 degrees of freedom
## Multiple R-squared: 0.918,Adjusted R-squared: 0.912
## F-statistic: 162 on 2 and 29 DF, p-value: <2e-16
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Confidance intervals VI

• With n − (k + 1) = 32 − 3 = 29 df we have c = 2.045 at the 5% significance
level (95% confidence level). The CI for log(sales) is computed as
(β̂1 = 1.084 ∓ 2.045 × 0.06) ≡ (0.961, 1.21).

• Since zero does not lie in the CI for log(sales) we can safely reject
H0 ∶ β1 = 0 at 5% level.

• Please remark that we can not reject, for instance, H0 ∶ β1 = 1 or
H0 ∶ β1 = 1.1, or H0 ∶ β1 = 0.98, at 5% level for the variable log(sales).

• Following the same steps, we can show that the CI for variable profmarg
is given by (−0.0045, 0.0479). Given that zero is included in the 95%
confidence interval, we fail to reject H0 ∶ β2 = 0 at the 5% level.

62 / 76



Confidance intervals VII

confint(reg) # by default, CI=0.95

## 2.5 % 97.5 %
## (Intercept) -5.33548 -3.4211
## log(sales) 0.96111 1.2073
## profmarg -0.00449 0.0478

confint(reg, level=0.99)

## 0.5 % 99.5 %
## (Intercept) -5.6683 -3.0882
## log(sales) 0.9183 1.2501
## profmarg -0.0136 0.0569
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F test: exclusion restrictions I

• Consider the following unrestricted model
log(salary) = β0+β1years+β2gamesyr+β3bavg+β4hrunsyr+β5rbisyr+u
where salary is the 1993 total salary, years is years in the league,
gamesyr is average games played per year, bavg is career batting
average, hrunsyr is home runs per year, and rbisyr is runs batted in per
year.

• We want to test H0 ∶ β3 = 0,β4 = 0,β5 = 0. The null hypothesis we test is
that, once years in the league and games per year have been controlled
for, the statistics measuring performance (bavg, hrunsyr, and rbisyr) have
no effect on salary.

• These are called exclusion restrictions. There are 3 such restrictions in
the null (q = 3). Imposing them, we get the restricted model.
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F test: exclusion restrictions II

• The above exclusion restrictions are an example of a set of multiple
restrictions because we are putting more than one restriction on
parameters.

• A test of multiple restrictions is called a multiple hypotheses test or a
joint hypotheses test.

• F statistic is given by

F = (SSRr − SSRur)/q
SSRur/(n − k − 1)

= (R2ur − R2r)/q
(1 − R2ur)/(n − k − 1)

• Since R-squared from unrestricted will be at least as high as high as
R-squared from restricted regression, F statistic is always positive !
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F test: exclusion restrictions III

• F statistic follows an F distribution with q degrees of freedom in the
numerator and n − (k + 1) degrees of freedom in the denominator, under
the null hypothesis, and assuming that the CLM assumptions hold.
url = "https://github.com/obakis/econ_data/raw/master/mlb1.rds"
download.file(url, "mlb1.rds", mode ="wb")
mlb1 = readRDS("mlb1.rds")
View(mlb1)

# Unrestricted OLS regression:
reg_ur <- lm(log(salary) ~ years+gamesyr+bavg+hrunsyr+rbisyr, data=mlb1)
summary(reg_ur)
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F test: exclusion restrictions IV

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.12e+01 2.89e-01 38.75 < 2e-16 ***
## years 6.89e-02 1.21e-02 5.68 2.8e-08 ***
## gamesyr 1.26e-02 2.65e-03 4.74 3.1e-06 ***
## bavg 9.79e-04 1.10e-03 0.89 0.38
## hrunsyr 1.44e-02 1.61e-02 0.90 0.37
## rbisyr 1.08e-02 7.17e-03 1.50 0.13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.727 on 347 degrees of freedom
## Multiple R-squared: 0.628,Adjusted R-squared: 0.622
## F-statistic: 117 on 5 and 347 DF, p-value: <2e-16
Using ”car” package, F testing is as simple as:
library(car)
linearHypothesis(reg_ur, c("bavg=0","hrunsyr=0","rbisyr=0"))
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F test: exclusion restrictions V

## Linear hypothesis test
##
## Hypothesis:
## bavg = 0
## hrunsyr = 0
## rbisyr = 0
##
## Model 1: restricted model
## Model 2: log(salary) ~ years + gamesyr + bavg + hrunsyr + rbisyr
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 350 198
## 2 347 183 3 15.1 9.55 4.5e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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F test: general linear restrictions I

It is also possible to test for general linear restrictions apart from exclusion
restrictions.

• Consider the following example
log(price) = β0+β1 log(assess)+β2 log(lotsize)+β3 log(sqrft)+β4 bdrms+u
where price is house price, assess is the assessed housing value (before
the house was sold), lotsize is size of the lot, in feet, sqrft is square
footage and finally bdrms number of bedrooms.

• Suppose we would like to test whether the assessed housing price is a
rational valuation. If this is the case, then a 1% change in assess should
be associated with a 1% change in price and all other factors should be
not related with house price, once the assessed value has been
controlled for. The rationality assumption would be

H0 ∶ β1 = 1, β2 = 0, β3 = 0, β4 = 0
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F test: general linear restrictions II

• The last 3 are exclusion restrictions while β1 = 1 is a linear restriction
different from exclusion restrictions.

• Using the car package
url = "https://github.com/obakis/econ_data/raw/master/hprice1.rds"
download.file(url, "hprice1.rds", mode ="wb")
hprice1 = readRDS("hprice1.rds")
View(hprice1)

# Unrestricted OLS regression:
reg_ur <- lm(lprice ~ lassess+llotsize+lsqrft+bdrms, data=hprice1)
summary(reg_ur)
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F test: general linear restrictions III

## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.26374 0.56966 0.46 0.64
## lassess 1.04307 0.15145 6.89 1e-09 ***
## llotsize 0.00744 0.03856 0.19 0.85
## lsqrft -0.10324 0.13843 -0.75 0.46
## bdrms 0.03384 0.02210 1.53 0.13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.148 on 83 degrees of freedom
## Multiple R-squared: 0.773,Adjusted R-squared: 0.762
## F-statistic: 70.6 on 4 and 83 DF, p-value: <2e-16

library(car)
linearHypothesis(reg_ur, c("lassess=1", "llotsize=0", "lsqrft=0", "bdrms=0"))
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F test: general linear restrictions IV

## Linear hypothesis test
##
## Hypothesis:
## lassess = 1
## llotsize = 0
## lsqrft = 0
## bdrms = 0
##
## Model 1: restricted model
## Model 2: lprice ~ lassess + llotsize + lsqrft + bdrms
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 87 1.88
## 2 83 1.82 4 0.0586 0.67 0.62

So we fail to reject H0.
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Heteroskedasticity robust std. erros I

library(lmtest) # for coeftest
coeftest(reg1) # assuming homoskedasticity

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28436 0.10419 2.73 0.0066 **
## educ 0.09203 0.00733 12.56 < 2e-16 ***
## exper 0.00412 0.00172 2.39 0.0171 *
## tenure 0.02207 0.00309 7.13 3.3e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

library(sandwich) # for vcovHC
coeftest(reg1, vcov = vcovHC) # heteroskedasticity robust, R default: "HC3"
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Heteroskedasticity robust std. erros II

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28436 0.11331 2.51 0.012 *
## educ 0.09203 0.00804 11.44 < 2e-16 ***
## exper 0.00412 0.00176 2.34 0.020 *
## tenure 0.02207 0.00386 5.72 1.8e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Heteroskedasticity robust std. erros III

coeftest(reg1, vcov = vcovHC(reg1, "HC3")) # robust, R default: "HC3"

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28436 0.11331 2.51 0.012 *
## educ 0.09203 0.00804 11.44 < 2e-16 ***
## exper 0.00412 0.00176 2.34 0.020 *
## tenure 0.02207 0.00386 5.72 1.8e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Heteroskedasticity robust std. erros IV

coeftest(reg1, vcov = vcovHC(reg1, "HC1")) # robust, Stata default: "HC1"

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28436 0.11171 2.55 0.011 *
## educ 0.09203 0.00792 11.62 < 2e-16 ***
## exper 0.00412 0.00175 2.36 0.019 *
## tenure 0.02207 0.00378 5.83 9.5e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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